Python Bokeh – Plotting Inverted Triangles on a Graph

Bokeh is a Python interactive data visualization. It renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity.
Bokeh can be used to plot inverted triangles on a graph. Plotting inverted triangles on a graph can be done using the inverted_triangle() method of the plotting module.
plotting.figure.inverted_triangle()
Syntax : inverted_triangle(parameters)
Parameters :
- x : x-coordinates of the center of the inverted triangle markers
 - y : y-coordinates of the center of the inverted triangle markers
 - size : diameter of the inverted triangle markers, default is 4
 - angle : angle of rotation of the inverted triangle markers, default is 0
 - angle_units : unit of the angle, default is rad
 - fill_alpha : fill alpha value of the inverted triangle markers
 - fill_color : fill color value of the inverted triangle markers
 - line_alpha : percentage value of line alpha, default is 1
 - line_cap : value of line cap for the line, default is butt
 - line_color : color of the line, default is black
 - line_dash : value of line dash such as :
 
- solid
 - dashed
 - dotted
 - dotdash
 - dashdot
 default is solid
- line_dash_offset : value of line dash offset, default is 0
 - line_join : value of line join, default in bevel
 - line_width : value of the width of the line, default is 1
 - name : user-supplied name for the model
 - tags : user-supplied values for the model
 Other Parameters :
- alpha : sets all alpha keyword arguments at once
 - color : sets all color keyword arguments at once
 - legend_field : name of a column in the data source that should be used
 - legend_group : name of a column in the data source that should be used
 - legend_label : labels the legend entry
 - muted : determines whether the glyph should be rendered as muted or not, default is False
 - name : optional user-supplied name to attach to the renderer
 - source : user-supplied data source
 - view : view for filtering the data source
 - visible : determines whether the glyph should be rendered or not, default is True
 - x_range_name : name of an extra range to use for mapping x-coordinates
 - y_range_name : name of an extra range to use for mapping y-coordinates
 - level : specifies the render level order for this glyph
 Returns : an object of class
GlyphRenderer
Example 1 : In this example we will be using the default values for plotting the graph.
# importing the modules  from bokeh.plotting import figure, output_file, show         # file to save the model  output_file("gfg.html")         # instantiating the figure object  graph = figure(title = "Bokeh Inverted Triangle Graph")       # the points to be plotted  x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]  y = [i ** 2 for i in x]      # plotting the graph  graph.inverted_triangle(x, y)       # displaying the model  show(graph)   | 
Output : 
Example 2 : In this example we will be plotting the inverted triangles where the sizes are in proportion to their values and various other parameters
# importing the modules  from bokeh.plotting import figure, output_file, show         # file to save the model  output_file("gfg.html")         # instantiating the figure object  graph = figure(title = "Bokeh Inverted Triangle Graph")       # name of the x-axis  graph.xaxis.axis_label = "x-axis"      # name of the y-axis  graph.yaxis.axis_label = "y-axis"     # the points to be plotted  x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]  y = [i ** 2 for i in x]       # size of the diamonds  size = [i * 2 for i in y]       # angle of the diamonds  angle = 10    # fill color value  fill_color = "yellow"    # color of the line  line_color = "red"    # name of the legend  legend_label = "Sample Triangles"      # plotting the graph  graph.inverted_triangle(x, y,                         size = size,                          angle = angle,                          fill_color = fill_color,                          line_color = line_color,                          legend_label = legend_label)         # displaying the model  show(graph)  | 
Output : 
<!–
–>










				
					



Please Login to comment…