Articulation Points (or Cut Vertices) in a Graph

A vertex v is an articulation point (also called cut vertex) if removing v increases the number of connected components.
Articulation points represent vulnerabilities in a connected network – single points whose failure would split the network into 2 or more components. They are useful for designing reliable networks.
Examples:
Articulation Point
In the above graph vertex 3 and 4 are Articulation Points since the removal of vertex 3 (or 4) along with its associated edges makes the graph disconnected.
Naive approach to find Articulation Points (or Cut Vertices) in a Graph:
A simple approach is to one by one remove all vertices and see if removal of a vertex causes disconnected graph.
Following the below steps to Implement the idea:
- Iterate over all the vertices and for every vertex do the following:
- Remove v from graph
- See if the graph remains connected (We can either use BFS or DFS)Â
- Add v back to the graph
Below is the implementation of above approach:
C++
// C++ program to find articulation points in an undirected// graph#include <bits/stdc++.h>using namespace std;Â
// A recursive function to traverse the graph without// considering the ith vertex and its associated edgesvoid dfs(vector<int> adj[], int V, vector<int>& vis,         int i, int curr){    vis[curr] = 1;    for (auto x : adj[curr]) {        if (x != i) {            if (!vis[x]) {                dfs(adj, V, vis, i, x);            }        }    }}Â
// Function to find Articulation Points in the graphvoid AP(vector<int> adj[], int V){Â
    // Iterating over all the vertices and for each vertex i    // remove the vertex and check whether the graph remains    // connected.    for (int i = 1; i <= V; i++) {Â
        // To keep track of number of components of graph        int components = 0;Â
        // To keep track of visited vertices        vector<int> vis(V + 1, 0);Â
        // Iterating over the graph after removing vertex i        // and its associated edges        for (int j = 1; j <= V; j++) {            if (j != i) {Â
                // If the jth vertex is not visited it will                // form a new component.                if (!vis[j]) {Â
                    // Increasing the number of components.                    components++;Â
                    // dfs call for the jth vertex                    dfs(adj, V, vis, i, j);                }            }        }        // If number of components is more than 1 after        // removing the ith vertex then vertex i is an        // articulation point.        if (components > 1) {            cout << i << "\n";        }    }}Â
// Utility function to add an edgevoid addEdge(vector<int> adj[], int u, int v){Â Â Â Â adj[u].push_back(v);Â Â Â Â adj[v].push_back(u);}Â
// Driver Codeint main(){    // Create graphs given in above diagrams    cout << "Articulation points in the graph \n";    int V = 5;    vector<int> adj1[V + 1];    addEdge(adj1, 1, 2);    addEdge(adj1, 2, 3);    addEdge(adj1, 1, 3);    addEdge(adj1, 3, 4);    addEdge(adj1, 4, 5);    AP(adj1, V);Â
    return 0;} |
Java
import java.util.ArrayList;import java.util.List;Â
public class GFG {    // A recursive function to traverse the graph without    // considering the ith vertex and its associated edges    static void dfs(List<Integer>[] adj, int V, List<Integer> vis,                    int i, int curr) {        vis.set(curr, 1);        for (int x : adj[curr]) {            if (x != i) {                if (vis.get(x) == 0) {                    dfs(adj, V, vis, i, x);                }            }        }    }Â
    // Function to find Articulation Points in the graph    static void AP(List<Integer>[] adj, int V) {Â
        // Iterating over all the vertices and for each vertex i        // remove the vertex and check whether the graph remains        // connected.        for (int i = 1; i <= V; i++) {Â
            // To keep track of number of components of graph            int components = 0;Â
            // To keep track of visited vertices            List<Integer> vis = new ArrayList<>();            for (int j = 0; j <= V; j++) {                vis.add(0);            }Â
            // Iterating over the graph after removing vertex i            // and its associated edges            for (int j = 1; j <= V; j++) {                if (j != i) {Â
                    // If the jth vertex is not visited it will                    // form a new component.                    if (vis.get(j) == 0) {Â
                        // Increasing the number of components.                        components++;Â
                        // dfs call for the jth vertex                        dfs(adj, V, vis, i, j);                    }                }            }            // If number of components is more than 1 after            // removing the ith vertex then vertex i is an            // articulation point.            if (components > 1) {                System.out.println(i);            }        }    }Â
    // Utility function to add an edge    static void addEdge(List<Integer>[] adj, int u, int v) {        adj[u].add(v);        adj[v].add(u);    }Â
    // Driver Code    public static void main(String[] args) {        // Create graphs given in above diagrams        System.out.println("Articulation points in the graph ");        int V = 5;        List<Integer>[] adj1 = new ArrayList[V + 1];        for (int i = 0; i <= V; i++) {            adj1[i] = new ArrayList<>();        }        addEdge(adj1, 1, 2);        addEdge(adj1, 2, 3);        addEdge(adj1, 1, 3);        addEdge(adj1, 3, 4);        addEdge(adj1, 4, 5);        AP(adj1, V);    }}Â
// This code is contributed by shivamgupta310570 |
Python3
# A recursive function to traverse the graph without# considering the ith vertex and its associated edgesdef dfs(adj, V, vis, i, curr):Â Â Â Â vis[curr] = 1Â Â Â Â for x in adj[curr]:Â Â Â Â Â Â Â Â if x != i and not vis[x]:Â Â Â Â Â Â Â Â Â Â Â Â dfs(adj, V, vis, i, x)Â
# Function to find Articulation Points in the graphdef AP(adj, V):Â Â Â Â for i in range(1, V + 1):Â
        # To keep track of number of components of graph        components = 0Â
        # To keep track of visited vertices        vis = [0] * (V + 1)Â
        # Iterating over the graph after removing vertex i        # and its associated edges        for j in range(1, V + 1):            if j != i:Â
                # If the jth vertex is not visited, it will                # form a new component.                if not vis[j]:Â
                    # Increasing the number of components.                    components += 1Â
                    # dfs call for the jth vertex                    dfs(adj, V, vis, i, j)Â
        # If number of components is more than 1 after        # removing the ith vertex then vertex i is an        # articulation point.        if components > 1:            print(i)Â
# Utility function to add an edgedef addEdge(adj, u, v):Â Â Â Â adj[u].append(v)Â Â Â Â adj[v].append(u)Â
# Driver Codeif __name__ == "__main__":    # Create graphs given in above diagrams    print("Articulation points in the graph")    V = 5    adj1 = [[] for _ in range(V + 1)]    addEdge(adj1, 1, 2)    addEdge(adj1, 2, 3)    addEdge(adj1, 1, 3)    addEdge(adj1, 3, 4)    addEdge(adj1, 4, 5)    AP(adj1, V)Â
 # This code is contributed by shivamgupta310570 |
C#
using System;using System.Collections.Generic;Â
class Program {    // A recursive function to traverse the graph without    // considering the ith vertex and its associated edges    static void Dfs(List<int>[] adj, int V, int[] vis,                    int i, int curr)    {        vis[curr] = 1;        foreach(var x in adj[curr])        {            if (x != i) {                if (vis[x] == 0) {                    Dfs(adj, V, vis, i, x);                }            }        }    }Â
    // Function to find Articulation Points in the graph    static void AP(List<int>[] adj, int V)    {        // Iterating over all the vertices and for each        // vertex i remove the vertex and check whether the        // graph remains connected.        for (int i = 1; i <= V; i++) {            // To keep track of number of components of            // graph            int components = 0;Â
            // To keep track of visited vertices            int[] vis = new int[V + 1];Â
            // Iterating over the graph after removing            // vertex i and its associated edges            for (int j = 1; j <= V; j++) {                if (j != i) {                    // If the jth vertex is not visited it                    // will form a new component.                    if (vis[j] == 0) {                        // Increasing the number of                        // components.                        components++;Â
                        // dfs call for the jth vertex                        Dfs(adj, V, vis, i, j);                    }                }            }Â
            // If the number of components is more than 1            // after removing the ith vertex, then vertex i            // is an articulation point.            if (components > 1) {                Console.WriteLine(i);            }        }    }Â
    // Utility function to add an edge    static void AddEdge(List<int>[] adj, int u, int v)    {        adj[u].Add(v);        adj[v].Add(u);    }Â
    // Driver Code    static void Main()    {        // Create graphs given in above diagrams        Console.WriteLine(            "Articulation points in the graph:");        int V = 5;        List<int>[] adj1 = new List<int>[ V + 1 ];        for (int i = 0; i <= V; i++) {            adj1[i] = new List<int>();        }Â
        AddEdge(adj1, 1, 2);        AddEdge(adj1, 2, 3);        AddEdge(adj1, 1, 3);        AddEdge(adj1, 3, 4);        AddEdge(adj1, 4, 5);        AP(adj1, V);    }} |
Articulation points in the graph 3 4
Time Complexity: O(V*(V+E)) for a graph represented using an adjacency list.
Auxiliary Space: O(V+E)
Finding Articulation Points (or Cut Vertices) in a Graph using Tarjan’s Algorithm:Â
The idea is to use DFS (Depth First Search). In DFS, follow vertices in a tree form called the DFS tree. In the DFS tree, a vertex u is the parent of another vertex v, if v is discovered by u.Â
In DFS tree, a vertex u is an articulation point if one of the following two conditions is true.Â
- u is the root of the DFS tree and it has at least two children.Â
- u is not the root of the DFS tree and it has a child v such that no vertex in the subtree rooted with v has a back edge to one of the ancestors in DFS tree of u.
Examples:
Let’s consider the following graph:
For the vertex 3 (which is not the root), vertex 4 is the child of vertex 3. No vertex in the subtree rooted at vertex 4 has a back edge to one of ancestors of vertex 3. Thus on removal of vertex 3 and its associated edges the graph will get disconnected or the number of components in the graph will increase as the subtree rooted at vertex 4 will form a separate component. Hence vertex 3 is an articulation point.
Now consider the following graph:
Again the vertex 4 is the child of vertex 3. For the subtree rooted at vertex 4, vertex 7 in this subtree has a back edge to one of the ancestors of vertex 3 (which is vertex 1). Thus this subtree will not get disconnected on the removal of vertex 3 because of this back edge. Since there is no child v of vertex 3, such that subtree rooted at vertex v does not have a back edge to one of the ancestors of vertex 3. Hence vertex 3 is not an articulation point in this case.
Follow the below steps to Implement the idea:
- Do DFS traversal of the given graphÂ
- In DFS traversal, maintain a parent[] array where parent[u] stores the parent of vertex u.
- To check if u is the root of the DFS tree and it has at least two children. For every vertex, count children. If the currently visited vertex u is root (parent[u] is NULL) and has more than two children, print it.Â
- To handle a second case where u is not the root of the DFS tree and it has a child v such that no vertex in the subtree rooted with v has a back edge to one of the ancestors in DFS tree of u maintain an array disc[] to store the discovery time of vertices.
- For every node u, find out the earliest visited vertex (the vertex with minimum discovery time) that can be reached from the subtree rooted with u. So we maintain an additional array low[] such that:Â
low[u] = min(disc[u], disc[w]) , Here w is an ancestor of u and there is a back edge from some descendant of u to w.
Below is the Implementation of the above approach:
C++
// C++ program to find articulation points in an undirected graph#include <bits/stdc++.h>using namespace std;Â
// A recursive function that find articulation // points using DFS traversal// adj[] --> Adjacency List representation of the graph// u --> The vertex to be visited next// visited[] --> keeps track of visited vertices// disc[] --> Stores discovery times of visited vertices// low[] -- >> earliest visited vertex (the vertex with minimum// discovery time) that can be reached from subtree// rooted with current vertex// parent --> Stores the parent vertex in DFS tree// isAP[] --> Stores articulation pointsvoid APUtil(vector<int> adj[], int u, bool visited[],            int disc[], int low[], int& time, int parent,            bool isAP[]){    // Count of children in DFS Tree    int children = 0;Â
    // Mark the current node as visited    visited[u] = true;Â
    // Initialize discovery time and low value    disc[u] = low[u] = ++time;Â
    // Go through all vertices adjacent to this    for (auto v : adj[u]) {        // If v is not visited yet, then make it a child of u        // in DFS tree and recur for it        if (!visited[v]) {            children++;            APUtil(adj, v, visited, disc, low, time, u, isAP);Â
            // Check if the subtree rooted with v has            // a connection to one of the ancestors of u            low[u] = min(low[u], low[v]);Â
            // If u is not root and low value of one of            // its child is more than discovery value of u.            if (parent != -1 && low[v] >= disc[u])                isAP[u] = true;        }Â
        // Update low value of u for parent function calls.        else if (v != parent)            low[u] = min(low[u], disc[v]);    }Â
    // If u is root of DFS tree and has two or more children.    if (parent == -1 && children > 1)        isAP[u] = true;}Â
void AP(vector<int> adj[], int V){Â Â Â Â int disc[V] = { 0 };Â Â Â Â int low[V];Â Â Â Â bool visited[V] = { false };Â Â Â Â bool isAP[V] = { false };Â Â Â Â int time = 0, par = -1;Â
    // Adding this loop so that the    // code works even if we are given    // disconnected graph    for (int u = 0; u < V; u++)        if (!visited[u])            APUtil(adj, u, visited, disc, low,                   time, par, isAP);Â
    // Printing the APs    for (int u = 0; u < V; u++)        if (isAP[u] == true)            cout << u << " ";}Â
// Utility function to add an edgevoid addEdge(vector<int> adj[], int u, int v){Â Â Â Â adj[u].push_back(v);Â Â Â Â adj[v].push_back(u);}Â
int main(){    // Create graphs given in above diagrams    cout << "Articulation points in first graph \n";    int V = 5;    vector<int> adj1[V];    addEdge(adj1, 1, 0);    addEdge(adj1, 0, 2);    addEdge(adj1, 2, 1);    addEdge(adj1, 0, 3);    addEdge(adj1, 3, 4);    AP(adj1, V);Â
    cout << "\nArticulation points in second graph \n";    V = 4;    vector<int> adj2[V];    addEdge(adj2, 0, 1);    addEdge(adj2, 1, 2);    addEdge(adj2, 2, 3);    AP(adj2, V);Â
    cout << "\nArticulation points in third graph \n";    V = 7;    vector<int> adj3[V];    addEdge(adj3, 0, 1);    addEdge(adj3, 1, 2);    addEdge(adj3, 2, 0);    addEdge(adj3, 1, 3);    addEdge(adj3, 1, 4);    addEdge(adj3, 1, 6);    addEdge(adj3, 3, 5);    addEdge(adj3, 4, 5);    AP(adj3, V);Â
    return 0;} |
Java
// A Java program to find articulation // points in an undirected graphimport java.util.*;Â
class Graph {Â
    static int time;Â
    static void addEdge(ArrayList<ArrayList<Integer> > adj, int u, int v)    {        adj.get(u).add(v);        adj.get(v).add(u);    }Â
    static void APUtil(ArrayList<ArrayList<Integer> > adj, int u,                       boolean visited[], int disc[], int low[],                       int parent, boolean isAP[])    {        // Count of children in DFS Tree        int children = 0;Â
        // Mark the current node as visited        visited[u] = true;Â
        // Initialize discovery time and low value        disc[u] = low[u] = ++time;Â
        // Go through all vertices adjacent to this        for (Integer v : adj.get(u)) {            // If v is not visited yet, then make it a child of u            // in DFS tree and recur for it            if (!visited[v]) {                children++;                APUtil(adj, v, visited, disc, low, u, isAP);Â
                // Check if the subtree rooted with v has                // a connection to one of the ancestors of u                low[u] = Math.min(low[u], low[v]);Â
                // If u is not root and low value of one of                // its child is more than discovery value of u.                if (parent != -1 && low[v] >= disc[u])                    isAP[u] = true;            }Â
            // Update low value of u for parent function calls.            else if (v != parent)                low[u] = Math.min(low[u], disc[v]);        }Â
        // If u is root of DFS tree and has two or more children.        if (parent == -1 && children > 1)            isAP[u] = true;    }Â
    static void AP(ArrayList<ArrayList<Integer> > adj, int V)    {        boolean[] visited = new boolean[V];        int[] disc = new int[V];        int[] low = new int[V];        boolean[] isAP = new boolean[V];        int time = 0, par = -1;Â
        // Adding this loop so that the        // code works even if we are given        // disconnected graph        for (int u = 0; u < V; u++)            if (visited[u] == false)                APUtil(adj, u, visited, disc, low, par, isAP);Â
        for (int u = 0; u < V; u++)            if (isAP[u] == true)                System.out.print(u + " ");        System.out.println();    }Â
    public static void main(String[] args)    {Â
        // Creating first example graph        int V = 5;        ArrayList<ArrayList<Integer> > adj1 =                          new ArrayList<ArrayList<Integer> >(V);        for (int i = 0; i < V; i++)            adj1.add(new ArrayList<Integer>());        addEdge(adj1, 1, 0);        addEdge(adj1, 0, 2);        addEdge(adj1, 2, 1);        addEdge(adj1, 0, 3);        addEdge(adj1, 3, 4);        System.out.println("Articulation points in first graph");        AP(adj1, V);Â
        // Creating second example graph        V = 4;        ArrayList<ArrayList<Integer> > adj2 =                          new ArrayList<ArrayList<Integer> >(V);        for (int i = 0; i < V; i++)            adj2.add(new ArrayList<Integer>());Â
        addEdge(adj2, 0, 1);        addEdge(adj2, 1, 2);        addEdge(adj2, 2, 3);Â
        System.out.println("Articulation points in second graph");        AP(adj2, V);Â
        // Creating third example graph        V = 7;        ArrayList<ArrayList<Integer> > adj3 =                             new ArrayList<ArrayList<Integer> >(V);        for (int i = 0; i < V; i++)            adj3.add(new ArrayList<Integer>());Â
        addEdge(adj3, 0, 1);        addEdge(adj3, 1, 2);        addEdge(adj3, 2, 0);        addEdge(adj3, 1, 3);        addEdge(adj3, 1, 4);        addEdge(adj3, 1, 6);        addEdge(adj3, 3, 5);        addEdge(adj3, 4, 5);Â
        System.out.println("Articulation points in third graph");Â
        AP(adj3, V);    }} |
Python3
# Python program to find articulation points in an undirected graph  from collections import defaultdict  # This class represents an undirected graph # using adjacency list representationclass Graph:      def __init__(self, vertices):        self.V = vertices # No. of vertices        self.graph = defaultdict(list) # default dictionary to store graph        self.Time = 0      # function to add an edge to graph    def addEdge(self, u, v):        self.graph[u].append(v)        self.graph[v].append(u)      '''A recursive function that find articulation points     using DFS traversal    u --> The vertex to be visited next    visited[] --> keeps track of visited vertices    disc[] --> Stores discovery times of visited vertices    parent[] --> Stores parent vertices in DFS tree    ap[] --> Store articulation points'''    def APUtil(self, u, visited, ap, parent, low, disc):Â
        # Count of children in current node         children = 0Â
        # Mark the current node as visited and print it        visited[u]= TrueÂ
        # Initialize discovery time and low value        disc[u] = self.Time        low[u] = self.Time        self.Time += 1Â
        # Recur for all the vertices adjacent to this vertex        for v in self.graph[u]:            # If v is not visited yet, then make it a child of u            # in DFS tree and recur for it            if visited[v] == False :                parent[v] = u                children += 1                self.APUtil(v, visited, ap, parent, low, disc)Â
                # Check if the subtree rooted with v has a connection to                # one of the ancestors of u                low[u] = min(low[u], low[v])Â
                # u is an articulation point in following cases                # (1) u is root of DFS tree and has two or more children.                if parent[u] == -1 and children > 1:                    ap[u] = TrueÂ
                #(2) If u is not root and low value of one of its child is more                # than discovery value of u.                if parent[u] != -1 and low[v] >= disc[u]:                    ap[u] = True                                        # Update low value of u for parent function calls               elif v != parent[u]:                 low[u] = min(low[u], disc[v])Â
Â
    # The function to do DFS traversal. It uses recursive APUtil()    def AP(self):          # Mark all the vertices as not visited         # and Initialize parent and visited,         # and ap(articulation point) arrays        visited = [False] * (self.V)        disc = [float("Inf")] * (self.V)        low = [float("Inf")] * (self.V)        parent = [-1] * (self.V)        ap = [False] * (self.V) # To store articulation pointsÂ
        # Call the recursive helper function        # to find articulation points        # in DFS tree rooted with vertex 'i'        for i in range(self.V):            if visited[i] == False:                self.APUtil(i, visited, ap, parent, low, disc)Â
        for index, value in enumerate (ap):            if value == True: print (index,end=" ")Â
 # Create a graph given in the above diagramg1 = Graph(5)g1.addEdge(1, 0)g1.addEdge(0, 2)g1.addEdge(2, 1)g1.addEdge(0, 3)g1.addEdge(3, 4)  print ("\nArticulation points in first graph ")g1.AP()Â
g2 = Graph(4)g2.addEdge(0, 1)g2.addEdge(1, 2)g2.addEdge(2, 3)print ("\nArticulation points in second graph ")g2.AP()Â
  g3 = Graph (7)g3.addEdge(0, 1)g3.addEdge(1, 2)g3.addEdge(2, 0)g3.addEdge(1, 3)g3.addEdge(1, 4)g3.addEdge(1, 6)g3.addEdge(3, 5)g3.addEdge(4, 5)print ("\nArticulation points in third graph ")g3.AP()Â
# This code is contributed by Neelam Yadav |
C#
// A C# program to find articulation// points in an undirected graphusing System;using System.Collections.Generic;Â
// This class represents an undirected graph// using adjacency list representationpublic class Graph {Â Â Â Â private int V; // No. of verticesÂ
    // Array of lists for Adjacency List Representation    private List<int>[] adj;    int time = 0;    static readonly int NIL = -1;Â
    // Constructor    Graph(int v)    {        V = v;        adj = new List<int>[v];        for (int i = 0; i < v; ++i)            adj[i] = new List<int>();    }Â
    // Function to add an edge into the graph    void addEdge(int v, int w)    {        adj[v].Add(w); // Add w to v's list.        adj[w].Add(v); // Add v to w's list    }Â
    // A recursive function that find articulation points using DFS    // u --> The vertex to be visited next    // visited[] --> keeps track of visited vertices    // disc[] --> Stores discovery times of visited vertices    // parent[] --> Stores parent vertices in DFS tree    // ap[] --> Store articulation points    void APUtil(int u, bool[] visited, int[] disc,                int[] low, int[] parent, bool[] ap)    {Â
        // Count of children in DFS Tree        int children = 0;Â
        // Mark the current node as visited        visited[u] = true;Â
        // Initialize discovery time and low value        disc[u] = low[u] = ++time;Â
        // Go through all vertices adjacent to this        foreach(int i in adj[u])        {            int v = i; // v is current adjacent of uÂ
            // If v is not visited yet, then make it a child of u            // in DFS tree and recur for it            if (!visited[v]) {                children++;                parent[v] = u;                APUtil(v, visited, disc, low, parent, ap);Â
                // Check if the subtree rooted with v has                // a connection to one of the ancestors of u                low[u] = Math.Min(low[u], low[v]);Â
                // u is an articulation point in following casesÂ
                // (1) u is root of DFS tree and has two or more children.                if (parent[u] == NIL && children > 1)                    ap[u] = true;Â
                // (2) If u is not root and low value of one of its child                // is more than discovery value of u.                if (parent[u] != NIL && low[v] >= disc[u])                    ap[u] = true;            }Â
            // Update low value of u for parent function calls.            else if (v != parent[u])                low[u] = Math.Min(low[u], disc[v]);        }    }Â
    // The function to do DFS traversal.    // It uses recursive function APUtil()    void AP()    {        // Mark all the vertices as not visited        bool[] visited = new bool[V];        int[] disc = new int[V];        int[] low = new int[V];        int[] parent = new int[V];        bool[] ap = new bool[V]; // To store articulation pointsÂ
        // Initialize parent and visited, and        // ap(articulation point) arrays        for (int i = 0; i < V; i++) {            parent[i] = NIL;            visited[i] = false;            ap[i] = false;        }Â
        // Call the recursive helper function to find articulation        // points in DFS tree rooted with vertex 'i'        for (int i = 0; i < V; i++)            if (visited[i] == false)                APUtil(i, visited, disc, low, parent, ap);Â
        // Now ap[] contains articulation points, print them        for (int i = 0; i < V; i++)            if (ap[i] == true)                Console.Write(i + " ");    }Â
    // Driver method    public static void Main(String[] args)    {        // Create graphs given in above diagrams        Console.WriteLine("Articulation points in first graph ");        Graph g1 = new Graph(5);        g1.addEdge(1, 0);        g1.addEdge(0, 2);        g1.addEdge(2, 1);        g1.addEdge(0, 3);        g1.addEdge(3, 4);        g1.AP();        Console.WriteLine();Â
        Console.WriteLine("Articulation points in Second graph");        Graph g2 = new Graph(4);        g2.addEdge(0, 1);        g2.addEdge(1, 2);        g2.addEdge(2, 3);        g2.AP();        Console.WriteLine();Â
        Console.WriteLine("Articulation points in Third graph ");        Graph g3 = new Graph(7);        g3.addEdge(0, 1);        g3.addEdge(1, 2);        g3.addEdge(2, 0);        g3.addEdge(1, 3);        g3.addEdge(1, 4);        g3.addEdge(1, 6);        g3.addEdge(3, 5);        g3.addEdge(4, 5);        g3.AP();    }}Â
// This code is contributed by PrinciRaj1992 |
Javascript
<script>// A Javascript program to find articulation points in an undirected graphÂ
// This class represents an undirected graph using adjacency list// representationclass Graph{    // Constructor    constructor(v)    {        this.V = v;        this.adj = new Array(v);        this.NIL = -1;        this.time = 0;        for (let i=0; i<v; ++i)            this.adj[i] = [];    }         //Function to add an edge into the graph    addEdge(v, w)    {        this.adj[v].push(w); // Add w to v's list.        this.adj[w].push(v);   //Add v to w's list    }         // A recursive function that find articulation points using DFS    // u --> The vertex to be visited next    // visited[] --> keeps track of visited vertices    // disc[] --> Stores discovery times of visited vertices    // parent[] --> Stores parent vertices in DFS tree    // ap[] --> Store articulation points    APUtil(u, visited, disc, low, parent, ap)    {        // Count of children in DFS Tree        let children = 0;          // Mark the current node as visited        visited[u] = true;          // Initialize discovery time and low value        disc[u] = low[u] = ++this.time;          // Go through all vertices adjacent to this                 for(let i of this.adj[u])        {            let v = i; // v is current adjacent of u              // If v is not visited yet, then make it a child of u            // in DFS tree and recur for it            if (!visited[v])            {                children++;                parent[v] = u;                this.APUtil(v, visited, disc, low, parent, ap);                  // Check if the subtree rooted with v has a connection to                // one of the ancestors of u                low[u] = Math.min(low[u], low[v]);                  // u is an articulation point in following cases                  // (1) u is root of DFS tree and has two or more children.                if (parent[u] == this.NIL && children > 1)                    ap[u] = true;                  // (2) If u is not root and low value of one of its child                // is more than discovery value of u.                if (parent[u] != this.NIL && low[v] >= disc[u])                    ap[u] = true;            }              // Update low value of u for parent function calls.            else if (v != parent[u])                low[u] = Math.min(low[u], disc[v]);        }    }         // The function to do DFS traversal. It uses recursive function APUtil()    AP()    {        // Mark all the vertices as not visited        let visited = new Array(this.V);        let disc = new Array(this.V);        let low = new Array(this.V);        let parent = new Array(this.V);        let ap = new Array(this.V); // To store articulation points          // Initialize parent and visited, and ap(articulation point)        // arrays        for (let i = 0; i < this.V; i++)        {            parent[i] = this.NIL;            visited[i] = false;            ap[i] = false;        }          // Call the recursive helper function to find articulation        // points in DFS tree rooted with vertex 'i'        for (let i = 0; i < this.V; i++)            if (visited[i] == false)                this.APUtil(i, visited, disc, low, parent, ap);          // Now ap[] contains articulation points, print them        for (let i = 0; i < this.V; i++)            if (ap[i] == true)                document.write(i+" ");    }}Â
// Driver method// Create graphs given in above diagramsdocument.write("Articulation points in first graph <br>");let g1 = new Graph(5);g1.addEdge(1, 0);g1.addEdge(0, 2);g1.addEdge(2, 1);g1.addEdge(0, 3);g1.addEdge(3, 4);g1.AP();document.write("<br>");Â
document.write("Articulation points in Second graph <br>");let g2 = new Graph(4);g2.addEdge(0, 1);g2.addEdge(1, 2);g2.addEdge(2, 3);g2.AP();document.write("<br>");Â
document.write("Articulation points in Third graph <br>");let g3 = new Graph(7);g3.addEdge(0, 1);g3.addEdge(1, 2);g3.addEdge(2, 0);g3.addEdge(1, 3);g3.addEdge(1, 4);g3.addEdge(1, 6);g3.addEdge(3, 5);g3.addEdge(4, 5);g3.AP();Â
Â
// This code is contributed by avanitrachhadiya2155</script> |
Articulation points in first graph 0 3 Articulation points in second graph 1 2 Articulation points in third graph 1
Time Complexity: O(V+E), For DFS it takes O(V+E) time.
Auxiliary Space: O(V+E), For visited array, adjacency list array.Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




